Cargando…
Automatic Identification of Referral-Warranted Diabetic Retinopathy Using Deep Learning on Mobile Phone Images
PURPOSE: To evaluate the performance of a deep learning algorithm in the detection of referral-warranted diabetic retinopathy (RDR) on low-resolution fundus images acquired with a smartphone and indirect ophthalmoscope lens adapter. METHODS: An automated deep learning algorithm trained on 92,364 tra...
Autores principales: | Ludwig, Cassie A., Perera, Chandrashan, Myung, David, Greven, Margaret A., Smith, Stephen J., Chang, Robert T., Leng, Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718806/ https://www.ncbi.nlm.nih.gov/pubmed/33294301 http://dx.doi.org/10.1167/tvst.9.2.60 |
Ejemplares similares
-
Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
por: Heisler, Morgan, et al.
Publicado: (2020) -
Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy
por: Tseng, Vincent S., et al.
Publicado: (2020) -
Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection
por: Van Craenendonck, Toon, et al.
Publicado: (2020) -
Deep Learning Model for Accurate Automatic Determination of Phakic Status in Pediatric and Adult Ultrasound Biomicroscopy Images
por: Le, Christopher, et al.
Publicado: (2020) -
Mobile phones are hazardous microbial platforms warranting robust public health and biosecurity protocols
por: Olsen, Matthew, et al.
Publicado: (2022)