Cargando…
Radiomic features based on Hessian index for prediction of prognosis in head-and-neck cancer patients
This study demonstrated the usefulness of radiomic features based on the Hessian index of differential topology for the prediction of prognosis prior to treatment in head-and-neck (HN) cancer patients. The Hessian index, which can indicate tumor heterogeneity with convex, concave, and other points (...
Autores principales: | Le, Quoc Cuong, Arimura, Hidetaka, Ninomiya, Kenta, Kabata, Yutaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718925/ https://www.ncbi.nlm.nih.gov/pubmed/33277570 http://dx.doi.org/10.1038/s41598-020-78338-7 |
Ejemplares similares
-
Can Persistent Homology Features Capture More Intrinsic Information about Tumors from (18)F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients?
por: Le, Quoc Cuong, et al.
Publicado: (2022) -
Radiomics with artificial intelligence for precision medicine in radiation therapy
por: Arimura, Hidetaka, et al.
Publicado: (2019) -
Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy
por: Hirose, Taka-aki, et al.
Publicado: (2020) -
Radiomics in Head and Neck Cancer Outcome Predictions
por: Gonçalves, Maria, et al.
Publicado: (2022) -
The δ(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature
por: Mihai, Adela, et al.
Publicado: (2020)