Cargando…
TGFBI modulates tumour hypoxia and promotes breast cancer metastasis
Breast cancer metastasis is a complex process that depends not only on intrinsic characteristics of metastatic stem cells, but also on the particular microenvironment that supports their growth and modulates the plasticity of the system. In search for microenvironmental factors supporting cancer ste...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718944/ https://www.ncbi.nlm.nih.gov/pubmed/33080107 http://dx.doi.org/10.1002/1878-0261.12828 |
_version_ | 1783619590923747328 |
---|---|
author | Fico, Flavia Santamaria‐Martínez, Albert |
author_facet | Fico, Flavia Santamaria‐Martínez, Albert |
author_sort | Fico, Flavia |
collection | PubMed |
description | Breast cancer metastasis is a complex process that depends not only on intrinsic characteristics of metastatic stem cells, but also on the particular microenvironment that supports their growth and modulates the plasticity of the system. In search for microenvironmental factors supporting cancer stem cell (CSC) growth and tumour progression to metastasis, we here investigated the role of the matricellular protein transforming growth factor beta induced (TGFBI) in breast cancer. We crossed the MMTV‐PyMT model of mammary gland tumorigenesis with a Tgfbi (Δ/Δ) mouse and studied the CSC content of the tumours. We performed RNAseq on wt and ko tumours, and analysed the tumour vasculature and the immune compartment by IHC and FACS. The source of TGFBI expression was determined by qPCR and by bone marrow transplantation experiments. Finally, we performed in silico analyses using the METABRIC cohort to assess the potential prognostic value of TGFBI. We observed that deletion of Tgfbi led to a dramatic decrease in CSC content and lung metastasis. Our results show that lack of TGFBI resulted in tumour vessel normalisation, with improved vessel perfusion and decreased hypoxia, a major factor controlling CSCs and metastasis. Furthermore, human data mining in a cohort of breast cancer patients showed that higher expression of TGFBI correlates with poor prognosis and is associated with the more aggressive subtypes of breast cancer. Overall, these data reveal a novel biological mechanism controlling metastasis that could potentially be exploited to improve the efficacy and delivery of chemotherapeutic agents in breast cancer. |
format | Online Article Text |
id | pubmed-7718944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77189442020-12-11 TGFBI modulates tumour hypoxia and promotes breast cancer metastasis Fico, Flavia Santamaria‐Martínez, Albert Mol Oncol Research Articles Breast cancer metastasis is a complex process that depends not only on intrinsic characteristics of metastatic stem cells, but also on the particular microenvironment that supports their growth and modulates the plasticity of the system. In search for microenvironmental factors supporting cancer stem cell (CSC) growth and tumour progression to metastasis, we here investigated the role of the matricellular protein transforming growth factor beta induced (TGFBI) in breast cancer. We crossed the MMTV‐PyMT model of mammary gland tumorigenesis with a Tgfbi (Δ/Δ) mouse and studied the CSC content of the tumours. We performed RNAseq on wt and ko tumours, and analysed the tumour vasculature and the immune compartment by IHC and FACS. The source of TGFBI expression was determined by qPCR and by bone marrow transplantation experiments. Finally, we performed in silico analyses using the METABRIC cohort to assess the potential prognostic value of TGFBI. We observed that deletion of Tgfbi led to a dramatic decrease in CSC content and lung metastasis. Our results show that lack of TGFBI resulted in tumour vessel normalisation, with improved vessel perfusion and decreased hypoxia, a major factor controlling CSCs and metastasis. Furthermore, human data mining in a cohort of breast cancer patients showed that higher expression of TGFBI correlates with poor prognosis and is associated with the more aggressive subtypes of breast cancer. Overall, these data reveal a novel biological mechanism controlling metastasis that could potentially be exploited to improve the efficacy and delivery of chemotherapeutic agents in breast cancer. John Wiley and Sons Inc. 2020-11-05 2020-12 /pmc/articles/PMC7718944/ /pubmed/33080107 http://dx.doi.org/10.1002/1878-0261.12828 Text en © 2020 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Fico, Flavia Santamaria‐Martínez, Albert TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title | TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title_full | TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title_fullStr | TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title_full_unstemmed | TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title_short | TGFBI modulates tumour hypoxia and promotes breast cancer metastasis |
title_sort | tgfbi modulates tumour hypoxia and promotes breast cancer metastasis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718944/ https://www.ncbi.nlm.nih.gov/pubmed/33080107 http://dx.doi.org/10.1002/1878-0261.12828 |
work_keys_str_mv | AT ficoflavia tgfbimodulatestumourhypoxiaandpromotesbreastcancermetastasis AT santamariamartinezalbert tgfbimodulatestumourhypoxiaandpromotesbreastcancermetastasis |