Cargando…
Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC
Cadherin‐mediated cell–cell contacts regulated by intracellular binders play critical roles in tissue homeostasis and tumorigenesis. Here, we screened mutational profiles of 312 annotated genes involved in cadherin binding in human squamous cell carcinomas and found MB21D2 to carry a unique recurren...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718949/ https://www.ncbi.nlm.nih.gov/pubmed/32979859 http://dx.doi.org/10.1002/1878-0261.12806 |
_version_ | 1783619592096055296 |
---|---|
author | Gracilla, Daniel E. Korla, Praveen Kumar Lai, Ming‐Tsung Chiang, An‐Jen Liou, Wen‐Shiung Sheu, Jim Jinn‐Chyuan |
author_facet | Gracilla, Daniel E. Korla, Praveen Kumar Lai, Ming‐Tsung Chiang, An‐Jen Liou, Wen‐Shiung Sheu, Jim Jinn‐Chyuan |
author_sort | Gracilla, Daniel E. |
collection | PubMed |
description | Cadherin‐mediated cell–cell contacts regulated by intracellular binders play critical roles in tissue homeostasis and tumorigenesis. Here, we screened mutational profiles of 312 annotated genes involved in cadherin binding in human squamous cell carcinomas and found MB21D2 to carry a unique recurrent Q311E mutation. MB21D2 overexpression was also frequently found in head and neck cancer (HNSCC) and was associated with poor clinical outcomes. Cell‐based characterizations revealed pro‐oncogenic roles for MB21D2 wild‐type (WT) and its Q311E mutant (Q311E) in cell proliferation, colony formation, sphere growth, and migration/invasion by promoting epithelial–mesenchymal transition. Conversely, MB21D2 knockdown in MB21D2‐overexpressing cells resulted in cell growth arrest and apoptosis. Xenograft tumor models with Q311E‐expressing cells formed larger and more aggressive lesions, compared to models with WT‐MB21D2‐expressing cells or an empty vector. Transcriptome and protein interactome analyses revealed enrichment of KRAS signaling by MB21D2 expression. Immunoblotting confirmed RAS elevation, along with upregulation/phosphorylation of PI3K, AKT, and CREB. Blocking RAS signaling in MB21D2‐expressing cells by manumycin significantly reduced cell growth and survival. Our study thus defined RAS signaling‐dependent pro‐oncogenic roles for MB21D2 overexpression and Q311E MB21D2 expression in HNSCC development. |
format | Online Article Text |
id | pubmed-7718949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77189492020-12-11 Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC Gracilla, Daniel E. Korla, Praveen Kumar Lai, Ming‐Tsung Chiang, An‐Jen Liou, Wen‐Shiung Sheu, Jim Jinn‐Chyuan Mol Oncol Research Articles Cadherin‐mediated cell–cell contacts regulated by intracellular binders play critical roles in tissue homeostasis and tumorigenesis. Here, we screened mutational profiles of 312 annotated genes involved in cadherin binding in human squamous cell carcinomas and found MB21D2 to carry a unique recurrent Q311E mutation. MB21D2 overexpression was also frequently found in head and neck cancer (HNSCC) and was associated with poor clinical outcomes. Cell‐based characterizations revealed pro‐oncogenic roles for MB21D2 wild‐type (WT) and its Q311E mutant (Q311E) in cell proliferation, colony formation, sphere growth, and migration/invasion by promoting epithelial–mesenchymal transition. Conversely, MB21D2 knockdown in MB21D2‐overexpressing cells resulted in cell growth arrest and apoptosis. Xenograft tumor models with Q311E‐expressing cells formed larger and more aggressive lesions, compared to models with WT‐MB21D2‐expressing cells or an empty vector. Transcriptome and protein interactome analyses revealed enrichment of KRAS signaling by MB21D2 expression. Immunoblotting confirmed RAS elevation, along with upregulation/phosphorylation of PI3K, AKT, and CREB. Blocking RAS signaling in MB21D2‐expressing cells by manumycin significantly reduced cell growth and survival. Our study thus defined RAS signaling‐dependent pro‐oncogenic roles for MB21D2 overexpression and Q311E MB21D2 expression in HNSCC development. John Wiley and Sons Inc. 2020-10-15 2020-12 /pmc/articles/PMC7718949/ /pubmed/32979859 http://dx.doi.org/10.1002/1878-0261.12806 Text en © 2020 National Sun Yat-sen University. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Gracilla, Daniel E. Korla, Praveen Kumar Lai, Ming‐Tsung Chiang, An‐Jen Liou, Wen‐Shiung Sheu, Jim Jinn‐Chyuan Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title | Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title_full | Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title_fullStr | Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title_full_unstemmed | Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title_short | Overexpression of wild type or a Q311E mutant MB21D2 promotes a pro‐oncogenic phenotype in HNSCC |
title_sort | overexpression of wild type or a q311e mutant mb21d2 promotes a pro‐oncogenic phenotype in hnscc |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718949/ https://www.ncbi.nlm.nih.gov/pubmed/32979859 http://dx.doi.org/10.1002/1878-0261.12806 |
work_keys_str_mv | AT gracilladaniele overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc AT korlapraveenkumar overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc AT laimingtsung overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc AT chianganjen overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc AT liouwenshiung overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc AT sheujimjinnchyuan overexpressionofwildtypeoraq311emutantmb21d2promotesaprooncogenicphenotypeinhnscc |