Cargando…

Assessing Tensile Bond Strength Between Denture Teeth and Nano-Zirconia Impregnated PMMA Denture Base

PURPOSE: This study evaluated tensile bond strength (TBS) between anterior acrylic teeth and denture bases made of high-impact heat-cured acrylic resin (HI PMMA) impregnated with zirconia nanoparticles. MATERIALS AND METHODS: A total of 30 specimens (each specimen containing a set of six upper anter...

Descripción completa

Detalles Bibliográficos
Autores principales: Zidan, Saleh, Silikas, Nikolaos, Haider, Julfikar, Alhotan, Abdulaziz, Jahantigh, Javad, Yates, Julian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718964/
https://www.ncbi.nlm.nih.gov/pubmed/33293810
http://dx.doi.org/10.2147/IJN.S273541
Descripción
Sumario:PURPOSE: This study evaluated tensile bond strength (TBS) between anterior acrylic teeth and denture bases made of high-impact heat-cured acrylic resin (HI PMMA) impregnated with zirconia nanoparticles. MATERIALS AND METHODS: A total of 30 specimens (each specimen containing a set of six upper anterior teeth) were fabricated from HI PMMA denture base acrylic resin reinforced with different weight concentrations of zirconia nanoparticles: 0% (control), 1.5%, 3%, 5%, 7% and 10%. TBS was tested according to a British standard (BS EN ISO 22112: 2017). A one-way analysis of variance (ANOVA) was employed with a Tukey post-hoc test. RESULTS: TBS values between the anterior teeth (central and lateral incisors and canine) and HI-PMMA denture base groups containing 7 wt.% (261.5 ± 66.0 N, 172.5 ± 57.4 N and 271.9 ± 86.3 N) and 10 wt.% (332.1 ± 122.9 N, 165.4 ± 48.7 N and 301.6 ± 73.2 N) zirconia were significantly lower compared to the control group (645.4 ± 84.8 N, 306.1 ± 81.6 N and 496.7 ± 179.1 N) and the other nanocomposite groups. However, TBS values for HI PMMA with 1.5 wt.% (534.4 ± 115.3 N, 304.7 ± 86.4 N, 514.0 ± 143.2 N), 3 wt.% (685.7 ± 159.6 N, 281.1 ± 78.3 N, 462.6 ± 122.1 N) and 5 wt.% (514.5 ± 134.3 N, 229.8 ± 67.3 N, 387.2 ± 99.4 N) zirconia showed slightly lower values than that of the control group but these were not significant. Failure modes between the teeth and denture base nanocomposites were predominantly cohesive fractures, which were clinically acceptable according to the Standard. CONCLUSION: The addition of zirconia nanoparticles to HI PMMA denture base at high concentration (7 wt.% and 10 wt. %) significantly (p<0.05) reduced the bonding strength for all types of anterior teeth compared to the control group.