Cargando…
Feature replacement methods enable reliable home video analysis for machine learning detection of autism
Autism Spectrum Disorder is a neuropsychiatric condition affecting 53 million children worldwide and for which early diagnosis is critical to the outcome of behavior therapies. Machine learning applied to features manually extracted from readily accessible videos (e.g., from smartphones) has the pot...
Autores principales: | Leblanc, Emilie, Washington, Peter, Varma, Maya, Dunlap, Kaitlyn, Penev, Yordan, Kline, Aaron, Wall, Dennis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719177/ https://www.ncbi.nlm.nih.gov/pubmed/33277527 http://dx.doi.org/10.1038/s41598-020-76874-w |
Ejemplares similares
-
Precision Telemedicine through Crowdsourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism Feature Recognition
por: Washington, Peter, et al.
Publicado: (2020) -
Machine learning models using mobile game play accurately classify children with autism
por: Deveau, Nicholas, et al.
Publicado: (2022) -
Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection
por: Washington, Peter, et al.
Publicado: (2021) -
Crowd annotations can approximate clinical autism impressions from short home videos with privacy protections
por: Washington, Peter, et al.
Publicado: (2022) -
A Mobile Game Platform for Improving Social Communication in Children with Autism: A Feasibility Study
por: Penev, Yordan, et al.
Publicado: (2021)