Cargando…

Generalized Richards model for predicting COVID-19 dynamics in Saudi Arabia based on particle swarm optimization Algorithm

COVID-19 pandemic is spreading around the world becoming thus a serious concern for health, economic and social systems worldwide. In such situation, predicting as accurately as possible the future dynamics of the virus is a challenging problem for scientists and decision-makers. In this paper, four...

Descripción completa

Detalles Bibliográficos
Autores principales: Zreiq, Rafat, Kamel, Souad, Boubaker, Sahbi, Al-Shammary, Asma A, Algahtani, Fahad D, Alshammari, Fares
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIMS Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719563/
https://www.ncbi.nlm.nih.gov/pubmed/33294485
http://dx.doi.org/10.3934/publichealth.2020064
Descripción
Sumario:COVID-19 pandemic is spreading around the world becoming thus a serious concern for health, economic and social systems worldwide. In such situation, predicting as accurately as possible the future dynamics of the virus is a challenging problem for scientists and decision-makers. In this paper, four phenomenological epidemic models as well as Suspected-Infected-Recovered (SIR) model are investigated for predicting the cumulative number of infected cases in Saudi Arabia in addition to the probable end-date of the outbreak. The prediction problem is formulated as an optimization framework and solved using a Particle Swarm Optimization (PSO) algorithm. The Generalized Richards Model (GRM) has been found to be the best one in achieving two objectives: first, fitting the collected data (covering 223 days between March 2(nd) and October 10, 2020) with the lowest mean absolute percentage error (MAPE = 3.2889%), the highest coefficient of determination (R(2) = 0.9953) and the lowest root mean squared error (RMSE = 8827); and second, predicting a probable end date found to be around the end of December 2020 with a projected number of 378,299 at the end of the outbreak. The obtained results may help the decision-makers to take suitable decisions related to the pandemic mitigation and containment and provide clear understanding of the virus dynamics in Saudi Arabia.