Cargando…
A Novel Transfer Support Matrix Machine for Motor Imagery-Based Brain Computer Interface
In recent years, emerging matrix learning methods have shown promising performance in motor imagery (MI)-based brain-computer interfaces (BCIs). Nonetheless, the electroencephalography (EEG) pattern variations among different subjects necessitates collecting a large amount of labeled individual data...
Autores principales: | Chen, Yan, Hang, Wenlong, Liang, Shuang, Liu, Xuejun, Li, Guanglin, Wang, Qiong, Qin, Jing, Choi, Kup-Sze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719793/ https://www.ncbi.nlm.nih.gov/pubmed/33328874 http://dx.doi.org/10.3389/fnins.2020.606949 |
Ejemplares similares
-
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021) -
Quantifying the role of motor imagery in brain-machine interfaces
por: Marchesotti, Silvia, et al.
Publicado: (2016) -
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
por: Dai, Mengxi, et al.
Publicado: (2018) -
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Subasi, Abdulhamit, et al.
Publicado: (2021) -
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021)