Cargando…
Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer
While high-throughput drug screening offers possibilities to profile phenotypic responses of hundreds of compounds, elucidation of the cell context-specific mechanisms of drug action requires additional analyses. To that end, we developed a computational target deconvolution pipeline that identifies...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720026/ https://www.ncbi.nlm.nih.gov/pubmed/33335681 http://dx.doi.org/10.1016/j.csbj.2020.11.001 |
Sumario: | While high-throughput drug screening offers possibilities to profile phenotypic responses of hundreds of compounds, elucidation of the cell context-specific mechanisms of drug action requires additional analyses. To that end, we developed a computational target deconvolution pipeline that identifies the key target dependencies based on collective drug response patterns in each cell line separately. The pipeline combines quantitative drug-cell line responses with drug-target interaction networks among both intended on- and potent off-targets to identify pharmaceutically actionable and selective therapeutic targets. To demonstrate its performance, the target deconvolution pipeline was applied to 310 small molecules tested on 20 genetically and phenotypically heterogeneous triple-negative breast cancer (TNBC) cell lines to identify cell line-specific target mechanisms in terms of cytotoxic and cytostatic drug target vulnerabilities. The functional essentiality of each protein target was quantified with a target addiction score (TAS), as a measure of dependency of the cell line on the therapeutic target. The target dependency profiling was shown to capture inhibitory information that is complementary to that obtained from the structure or sensitivity of the drugs. Comparison of the TAS profiles and gene essentiality scores from CRISPR-Cas9 knockout screens revealed that certain proteins with low gene essentiality showed high target addictions, suggesting that they might be functioning as protein groups, and therefore be resistant to single gene knock-out. The comparative analysis discovered protein groups of potential multi-target synthetic lethal interactions, for instance, among histone deacetylases (HDACs). Our integrated approach also recovered a number of well-established TNBC cell line-specific drivers and known TNBC therapeutic targets, such as HDACs and cyclin-dependent kinases (CDKs). The present work provides novel insights into druggable vulnerabilities for TNBC, and opportunities to identify multi-target synthetic lethal interactions for further studies. |
---|