Cargando…
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
BACKGROUND: Flowering is one of the most important processes for flowering plants such as cotton, reflecting the transition from vegetative to reproductive growth and is of central importance to crop yield and adaptability. Conventionally, categorical scoring systems have been widely used to study f...
Autores principales: | Jiang, Yu, Li, Changying, Xu, Rui, Sun, Shangpeng, Robertson, Jon S., Paterson, Andrew H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720604/ https://www.ncbi.nlm.nih.gov/pubmed/33372635 http://dx.doi.org/10.1186/s13007-020-00698-y |
Ejemplares similares
-
In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR
por: Sun, Shangpeng, et al.
Publicado: (2018) -
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera
por: Jiang, Yu, et al.
Publicado: (2018) -
GPhenoVision: A Ground Mobile System with Multi-modal Imaging for Field-Based High Throughput Phenotyping of Cotton
por: Jiang, Yu, et al.
Publicado: (2018) -
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection
por: Xu, Rui, et al.
Publicado: (2018) -
DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field
por: Jiang, Yu, et al.
Publicado: (2019)