Cargando…
Exploration of predictive and prognostic alternative splicing signatures in lung adenocarcinoma using machine learning methods
BACKGROUND: Alternative splicing (AS) plays critical roles in generating protein diversity and complexity. Dysregulation of AS underlies the initiation and progression of tumors. Machine learning approaches have emerged as efficient tools to identify promising biomarkers. It is meaningful to explore...
Autores principales: | Cai, Qidong, He, Boxue, Zhang, Pengfei, Zhao, Zhenyu, Peng, Xiong, Zhang, Yuqian, Xie, Hui, Wang, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720605/ https://www.ncbi.nlm.nih.gov/pubmed/33287830 http://dx.doi.org/10.1186/s12967-020-02635-y |
Ejemplares similares
-
Identification of a novel prognostic DNA methylation signature for lung adenocarcinoma based on consensus clustering method
por: Cai, Qidong, et al.
Publicado: (2020) -
A model of twenty-three metabolic-related genes predicting overall survival for lung adenocarcinoma
por: Zhao, Zhenyu, et al.
Publicado: (2020) -
N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non–Small Cell Lung Cancer Prognosis
por: Zhao, Zhenyu, et al.
Publicado: (2021) -
Construction and validation of a 15-gene ferroptosis signature in lung adenocarcinoma
por: Tu, Guangxu, et al.
Publicado: (2021) -
Switched alternative splicing events as attractive features in lung squamous cell carcinoma
por: He, Boxue, et al.
Publicado: (2022)