Cargando…

Phylogenomics and phylodynamics of SARS-CoV-2 genomes retrieved from India

Background: This is the first phylodynamic study attempted on SARS-CoV-2 genomes from India to infer the current state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution using phylogenetic network and growth trends. Materials & Methods: Out of 286 retrieved whole genomes f...

Descripción completa

Detalles Bibliográficos
Autores principales: Farah, Sameera, Atkulwar, Ashwin, Praharaj, Manas Ranjan, Khan, Raja, Gandham, Ravikumar, Baig, Mumtaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Medicine Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720652/
http://dx.doi.org/10.2217/fvl-2020-0243
Descripción
Sumario:Background: This is the first phylodynamic study attempted on SARS-CoV-2 genomes from India to infer the current state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution using phylogenetic network and growth trends. Materials & Methods: Out of 286 retrieved whole genomes from India, 138 haplotypes were used to build a phylogenetic network. The birth–death serial model (BDSIR) package of BEAST2 was used to calculate the reproduction number of SARS-CoV-2. Population dynamics were investigated using the stamp date method as implemented in BEAST2 and BEAST 1.10.4. Results: A median-joining network revealed two ancestral clusters. A high basic reproduction number of SARS-CoV-2 was found. An exponential rise in the effective population size of Indian isolates was detected. Conclusion: The phylogenetic network reveals dual ancestry and possibility of community transmission of SARS-CoV-2 in India.