Cargando…
Flight of the PEGASUS? Comparing Transformers on Few-Shot and Zero-Shot Multi-document Abstractive Summarization
Recent work has shown that pre-trained Transformers obtain remarkable performance on many natural language processing tasks, including automatic summarization. However, most work has focused on (relatively) data-rich single-document summarization settings. In this paper, we explore highly-abstractiv...
Autores principales: | Goodwin, Travis R., Savery, Max E., Demner-Fushman, Dina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720861/ https://www.ncbi.nlm.nih.gov/pubmed/33293900 |
Ejemplares similares
-
Question-driven summarization of answers to consumer health questions
por: Savery, Max, et al.
Publicado: (2020) -
Identifying suicide documentation in clinical notes through zero‐shot learning
por: Workman, Terri Elizabeth, et al.
Publicado: (2023) -
Improving Few- and Zero-Shot Reaction Template Prediction
Using Modern Hopfield Networks
por: Seidl, Philipp, et al.
Publicado: (2022) -
Few-Shot Emergency Siren Detection
por: Cantarini, Michela, et al.
Publicado: (2022) -
Detecting Errors with Zero-Shot Learning
por: Wu, Xiaoyu, et al.
Publicado: (2022)