Cargando…

Generalizable brain network markers of major depressive disorder across multiple imaging sites

Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamashita, Ayumu, Sakai, Yuki, Yamada, Takashi, Yahata, Noriaki, Kunimatsu, Akira, Okada, Naohiro, Itahashi, Takashi, Hashimoto, Ryuichiro, Mizuta, Hiroto, Ichikawa, Naho, Takamura, Masahiro, Okada, Go, Yamagata, Hirotaka, Harada, Kenichiro, Matsuo, Koji, Tanaka, Saori C., Kawato, Mitsuo, Kasai, Kiyoto, Kato, Nobumasa, Takahashi, Hidehiko, Okamoto, Yasumasa, Yamashita, Okito, Imamizu, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/
https://www.ncbi.nlm.nih.gov/pubmed/33284797
http://dx.doi.org/10.1371/journal.pbio.3000966
_version_ 1783619984912547840
author Yamashita, Ayumu
Sakai, Yuki
Yamada, Takashi
Yahata, Noriaki
Kunimatsu, Akira
Okada, Naohiro
Itahashi, Takashi
Hashimoto, Ryuichiro
Mizuta, Hiroto
Ichikawa, Naho
Takamura, Masahiro
Okada, Go
Yamagata, Hirotaka
Harada, Kenichiro
Matsuo, Koji
Tanaka, Saori C.
Kawato, Mitsuo
Kasai, Kiyoto
Kato, Nobumasa
Takahashi, Hidehiko
Okamoto, Yasumasa
Yamashita, Okito
Imamizu, Hiroshi
author_facet Yamashita, Ayumu
Sakai, Yuki
Yamada, Takashi
Yahata, Noriaki
Kunimatsu, Akira
Okada, Naohiro
Itahashi, Takashi
Hashimoto, Ryuichiro
Mizuta, Hiroto
Ichikawa, Naho
Takamura, Masahiro
Okada, Go
Yamagata, Hirotaka
Harada, Kenichiro
Matsuo, Koji
Tanaka, Saori C.
Kawato, Mitsuo
Kasai, Kiyoto
Kato, Nobumasa
Takahashi, Hidehiko
Okamoto, Yasumasa
Yamashita, Okito
Imamizu, Hiroshi
author_sort Yamashita, Ayumu
collection PubMed
description Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.
format Online
Article
Text
id pubmed-7721148
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77211482020-12-15 Generalizable brain network markers of major depressive disorder across multiple imaging sites Yamashita, Ayumu Sakai, Yuki Yamada, Takashi Yahata, Noriaki Kunimatsu, Akira Okada, Naohiro Itahashi, Takashi Hashimoto, Ryuichiro Mizuta, Hiroto Ichikawa, Naho Takamura, Masahiro Okada, Go Yamagata, Hirotaka Harada, Kenichiro Matsuo, Koji Tanaka, Saori C. Kawato, Mitsuo Kasai, Kiyoto Kato, Nobumasa Takahashi, Hidehiko Okamoto, Yasumasa Yamashita, Okito Imamizu, Hiroshi PLoS Biol Research Article Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability. Public Library of Science 2020-12-07 /pmc/articles/PMC7721148/ /pubmed/33284797 http://dx.doi.org/10.1371/journal.pbio.3000966 Text en © 2020 Yamashita et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Yamashita, Ayumu
Sakai, Yuki
Yamada, Takashi
Yahata, Noriaki
Kunimatsu, Akira
Okada, Naohiro
Itahashi, Takashi
Hashimoto, Ryuichiro
Mizuta, Hiroto
Ichikawa, Naho
Takamura, Masahiro
Okada, Go
Yamagata, Hirotaka
Harada, Kenichiro
Matsuo, Koji
Tanaka, Saori C.
Kawato, Mitsuo
Kasai, Kiyoto
Kato, Nobumasa
Takahashi, Hidehiko
Okamoto, Yasumasa
Yamashita, Okito
Imamizu, Hiroshi
Generalizable brain network markers of major depressive disorder across multiple imaging sites
title Generalizable brain network markers of major depressive disorder across multiple imaging sites
title_full Generalizable brain network markers of major depressive disorder across multiple imaging sites
title_fullStr Generalizable brain network markers of major depressive disorder across multiple imaging sites
title_full_unstemmed Generalizable brain network markers of major depressive disorder across multiple imaging sites
title_short Generalizable brain network markers of major depressive disorder across multiple imaging sites
title_sort generalizable brain network markers of major depressive disorder across multiple imaging sites
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721148/
https://www.ncbi.nlm.nih.gov/pubmed/33284797
http://dx.doi.org/10.1371/journal.pbio.3000966
work_keys_str_mv AT yamashitaayumu generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT sakaiyuki generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT yamadatakashi generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT yahatanoriaki generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT kunimatsuakira generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT okadanaohiro generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT itahashitakashi generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT hashimotoryuichiro generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT mizutahiroto generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT ichikawanaho generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT takamuramasahiro generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT okadago generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT yamagatahirotaka generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT haradakenichiro generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT matsuokoji generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT tanakasaoric generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT kawatomitsuo generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT kasaikiyoto generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT katonobumasa generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT takahashihidehiko generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT okamotoyasumasa generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT yamashitaokito generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites
AT imamizuhiroshi generalizablebrainnetworkmarkersofmajordepressivedisorderacrossmultipleimagingsites