Cargando…
Measurement of Semantic Textual Similarity in Clinical Texts: Comparison of Transformer-Based Models
BACKGROUND: Semantic textual similarity (STS) is one of the fundamental tasks in natural language processing (NLP). Many shared tasks and corpora for STS have been organized and curated in the general English domain; however, such resources are limited in the biomedical domain. In 2019, the National...
Autores principales: | Yang, Xi, He, Xing, Zhang, Hansi, Ma, Yinghan, Bian, Jiang, Wu, Yonghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721552/ https://www.ncbi.nlm.nih.gov/pubmed/33226350 http://dx.doi.org/10.2196/19735 |
Ejemplares similares
-
Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT
por: Mutinda, Faith Wavinya, et al.
Publicado: (2021) -
An Ensemble Semantic Textual Similarity Measure Based on Multiple Evidences for Biomedical Documents
por: Li, Meijing, et al.
Publicado: (2022) -
Distributed representation and one-hot representation fusion with gated network for clinical semantic textual similarity
por: Xiong, Ying, et al.
Publicado: (2020) -
Adapting Bidirectional Encoder Representations from Transformers (BERT) to Assess Clinical Semantic Textual Similarity: Algorithm Development and Validation Study
por: Kades, Klaus, et al.
Publicado: (2021) -
Semantic textual similarity for modern standard and dialectal Arabic using transfer learning
por: Al Sulaiman, Mansour, et al.
Publicado: (2022)