Cargando…
The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs
Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster and more reliable analysis of large datasets and to enable further downstream processing e.g. automated diagnosis. In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) as a...
Autores principales: | Kessler, Dimitri A., MacKay, James W., Crowe, Victoria A., Henson, Frances M.D., Graves, Martin J., Gilbert, Fiona J., Kaggie, Joshua D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721597/ https://www.ncbi.nlm.nih.gov/pubmed/33075675 http://dx.doi.org/10.1016/j.compmedimag.2020.101793 |
Ejemplares similares
-
Quantitative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an exploratory, cross-sectional comparison between OA and healthy control knees
por: Ranmuthu, Chanuka D. S., et al.
Publicado: (2021) -
Author Correction: Ultra Short Echo Time MRI of Iron-Labelled Mesenchymal Stem Cells in an Ovine Osteochondral Defect Model
por: Kaggie, Joshua D., et al.
Publicado: (2020) -
Ultra Short Echo Time MRI of Iron-Labelled Mesenchymal Stem Cells in an Ovine Osteochondral Defect Model
por: Kaggie, Joshua D., et al.
Publicado: (2020) -
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021) -
Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation
por: Tangaro, Sabina, et al.
Publicado: (2015)