Cargando…
Degree difference: a simple measure to characterize structural heterogeneity in complex networks
Despite the growing interest in characterizing the local geometry leading to the global topology of networks, our understanding of the local structure of complex networks, especially real-world networks, is still incomplete. Here, we analyze a simple, elegant yet underexplored measure, ‘degree diffe...
Autores principales: | Farzam, Amirhossein, Samal, Areejit, Jost, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721722/ https://www.ncbi.nlm.nih.gov/pubmed/33288824 http://dx.doi.org/10.1038/s41598-020-78336-9 |
Ejemplares similares
-
Edge-based analysis of networks: curvatures of graphs and hypergraphs
por: Eidi, Marzieh, et al.
Publicado: (2020) -
Comparative analysis of two discretizations of Ricci curvature for complex networks
por: Samal, Areejit, et al.
Publicado: (2018) -
Discrete Ricci curvatures capture age-related changes in human brain functional connectivity networks
por: Yadav, Yasharth, et al.
Publicado: (2023) -
Low degree metabolites explain essential reactions and enhance modularity in biological networks
por: Samal, Areejit, et al.
Publicado: (2006) -
Genotype networks in metabolic reaction spaces
por: Samal, Areejit, et al.
Publicado: (2010)