Cargando…
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
As a leading cause of death and morbidity, heart failure (HF) is responsible for a large portion of healthcare and disability costs worldwide. Current approaches to define specific HF subpopulations may fail to account for the diversity of etiologies, comorbidities, and factors driving disease progr...
Autores principales: | Nagamine, Tasha, Gillette, Brian, Pakhomov, Alexey, Kahoun, John, Mayer, Hannah, Burghaus, Rolf, Lippert, Jörg, Saxena, Mayur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721729/ https://www.ncbi.nlm.nih.gov/pubmed/33288774 http://dx.doi.org/10.1038/s41598-020-77286-6 |
Ejemplares similares
-
Data-driven identification of heart failure disease states and progression pathways using electronic health records
por: Nagamine, Tasha, et al.
Publicado: (2022) -
CKD subpopulations defined by risk‐factors: A longitudinal analysis of electronic health records
por: Ramaswamy, Rajagopalan, et al.
Publicado: (2021) -
Applied unsupervised learning with Python: discover hidden patterns and relationships in unstructured data with Python
por: Johnston, Benjamin, et al.
Publicado: (2019) -
Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records
por: Wang, Mengying, et al.
Publicado: (2022) -
Usability Evaluation of an Unstructured Clinical Document Query Tool for Researchers
por: Hultman, Gretchen, et al.
Publicado: (2018)