Cargando…
Deconvoluting kernel density estimation and regression for locally differentially private data
Local differential privacy has become the gold-standard of privacy literature for gathering or releasing sensitive individual data points in a privacy-preserving manner. However, locally differential data can twist the probability density of the data because of the additive noise used to ensure priv...
Autor principal: | Farokhi, Farhad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721740/ https://www.ncbi.nlm.nih.gov/pubmed/33288799 http://dx.doi.org/10.1038/s41598-020-78323-0 |
Ejemplares similares
-
Contingent Kernel Density Estimation
por: Fortmann-Roe, Scott, et al.
Publicado: (2012) -
Differentially private distributed logistic regression using private and public data
por: Ji, Zhanglong, et al.
Publicado: (2014) -
Sarve: synthetic data and local differential privacy for private frequency estimation
por: Varma, Gatha, et al.
Publicado: (2022) -
Differentially private density estimation with skew-normal mixtures model
por: Wu, Weisan
Publicado: (2021) -
Robust Variable Selection and Estimation Based on Kernel Modal Regression
por: Guo, Changying, et al.
Publicado: (2019)