Cargando…
Elucidating the constitutive relationship of calcium–silicate–hydrate gel using high throughput reactive molecular simulations and machine learning
Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate ML with...
Autores principales: | Lyngdoh, Gideon A., Li, Hewenxuan, Zaki, Mohd, Krishnan, N. M. Anoop, Das, Sumanta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721899/ https://www.ncbi.nlm.nih.gov/pubmed/33288786 http://dx.doi.org/10.1038/s41598-020-78368-1 |
Ejemplares similares
-
An Elucidative Review of the Nanomaterial Effect on the Durability and Calcium-Silicate-Hydrate (C-S-H) Gel Development of Concrete
por: Al-saffar, Farqad Yousuf, et al.
Publicado: (2023) -
Characterization of Calcium Silicate Hydrate Gels with Different Calcium to Silica Ratios and Polymer Modifications
por: Madadi, Amirhossein, et al.
Publicado: (2022) -
Nanoindentation Study of Calcium-Silicate-Hydrate Gel via Molecular Dynamics Simulations
por: Yin, Hang, et al.
Publicado: (2023) -
Adsorption of Lead Ion from Wastewater Using Non-Crystal Hydrated Calcium Silicate Gel
por: Liu, Shijie, et al.
Publicado: (2021) -
Nanoscale origins of creep in calcium silicate hydrates
por: Morshedifard, A., et al.
Publicado: (2018)