Cargando…

Mixed-Level Neural Machine Translation

Building the first Russian-Vietnamese neural machine translation system, we faced the problem of choosing a translation unit system on which source and target embeddings are based. Available homogeneous translation unit systems with the same translation unit on the source and target sides do not per...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Thien, Nguyen, Huu, Tran, Phuoc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722455/
https://www.ncbi.nlm.nih.gov/pubmed/33335545
http://dx.doi.org/10.1155/2020/8859452
Descripción
Sumario:Building the first Russian-Vietnamese neural machine translation system, we faced the problem of choosing a translation unit system on which source and target embeddings are based. Available homogeneous translation unit systems with the same translation unit on the source and target sides do not perfectly suit the investigated language pair. To solve the problem, in this paper, we propose a novel heterogeneous translation unit system, considering linguistic characteristics of the synthetic Russian language and the analytic Vietnamese language. Specifically, we decrease the embedding level on the source side by splitting token into subtokens and increase the embedding level on the target side by merging neighboring tokens into supertoken. The experiment results show that the proposed heterogeneous system improves over the existing best homogeneous Russian-Vietnamese translation system by 1.17 BLEU. Our approach could be applied to building translation bots for language pairs with different linguistic characteristics.