Cargando…
Predicting porosity, permeability, and tortuosity of porous media from images by deep learning
Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ([Formula: see text] ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The...
Autores principales: | Graczyk, Krzysztof M., Matyka, Maciej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722859/ https://www.ncbi.nlm.nih.gov/pubmed/33293546 http://dx.doi.org/10.1038/s41598-020-78415-x |
Ejemplares similares
-
Deep learning for diffusion in porous media
por: Graczyk, Krzysztof M., et al.
Publicado: (2023) -
The Effect of Tortuosity on Permeability of Porous Scaffold
por: Prakoso, Akbar Teguh, et al.
Publicado: (2023) -
Predicting Effective Diffusivity of Porous Media from Images by Deep Learning
por: Wu, Haiyi, et al.
Publicado: (2019) -
A review on reactive transport model and porosity evolution in the porous media
por: Baqer, Yousef, et al.
Publicado: (2022) -
Pushing Droplet Through a Porous Medium
por: Matyka, Maciej
Publicado: (2021)