Cargando…

Hybrid guided space-time optical modes in unpatterned films

Light is confined transversely and delivered axially in a waveguide. However, waveguides are lossy static structures whose modal characteristics are fundamentally determined by their boundary conditions. Here we show that unpatterned planar waveguides can provide low-loss two-dimensional waveguiding...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiri, Abbas, Yessenov, Murat, Webster, Scott, Schepler, Kenneth L., Abouraddy, Ayman F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722861/
https://www.ncbi.nlm.nih.gov/pubmed/33293548
http://dx.doi.org/10.1038/s41467-020-20009-2
Descripción
Sumario:Light is confined transversely and delivered axially in a waveguide. However, waveguides are lossy static structures whose modal characteristics are fundamentally determined by their boundary conditions. Here we show that unpatterned planar waveguides can provide low-loss two-dimensional waveguiding by using space-time wave packets, which are unique one-dimensional propagation-invariant pulsed optical beams. We observe hybrid guided space-time modes that are index-guided in one transverse dimension and localized along the unbounded dimension. We confirm that these fields enable overriding the boundary conditions by varying post-fabrication the group index of the fundamental mode in a 2-μm-thick, 25-mm-long silica film, achieved by modifying the field’s spatio-temporal structure. Tunability of the group index over an unprecedented range from 1.26 to 1.77 is verified while maintaining a spectrally flat zero-dispersion profile. Our work paves the way to utilizing space-time wave packets in on-chip platforms, and enable phase-matching strategies that circumvent restrictions due to intrinsic material properties.