Cargando…
Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy
The accurate segmentation and tracking of cells in microscopy image sequences is an important task in biomedical research, e.g., for studying the development of tissues, organs or entire organisms. However, the segmentation of touching cells in images with a low signal-to-noise-ratio is still a chal...
Autores principales: | Scherr, Tim, Löffler, Katharina, Böhland, Moritz, Mikut, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723299/ https://www.ncbi.nlm.nih.gov/pubmed/33290432 http://dx.doi.org/10.1371/journal.pone.0243219 |
Ejemplares similares
-
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction
por: Löffler, Katharina, et al.
Publicado: (2021) -
BeadNet: deep learning-based bead detection and counting in low-resolution microscopy images
por: Scherr, Tim, et al.
Publicado: (2020) -
Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis
por: Böhland, Moritz, et al.
Publicado: (2021) -
microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation
por: Scherr, Tim, et al.
Publicado: (2022) -
Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
por: Wang, Dong, et al.
Publicado: (2023)