Cargando…
LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway
The inhibition of the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells (BMSCs) triggered by the excessive use of glucocorticoids, is considered a potential mechanism for the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Long non-coding RNAs (lncR...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723501/ https://www.ncbi.nlm.nih.gov/pubmed/33236136 http://dx.doi.org/10.3892/ijmm.2020.4788 |
_version_ | 1783620350897029120 |
---|---|
author | Xu, Yingxing Jiang, Yaping Wang, Yingzhen Zhao, Zhiping Li, Tao |
author_facet | Xu, Yingxing Jiang, Yaping Wang, Yingzhen Zhao, Zhiping Li, Tao |
author_sort | Xu, Yingxing |
collection | PubMed |
description | The inhibition of the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells (BMSCs) triggered by the excessive use of glucocorticoids, is considered a potential mechanism for the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Long non-coding RNAs (lncRNAs) have been proven to influence the proliferation, apoptosis and differentiation of BMSCs by regulating the expression of critical genes. A previous microarray analysis by the authors confirmed the significant downregulation of LINC00473 in human BMSCs (hBMSCs) from patients with SONFH. However, the underlying role and molecular mechanisms of LINC00473 on dexamethasone (Dex)-stimulated hBMSCs remains unknown. In the present study, the expression of LINC00473 was determined in the hBMSCs of patients with SONFH and control patients. In addition, the protective effects and underlying molecular mechanisms of LINC00473 in Dex-stimulated hBMSCs were investigated. The results revealed that LINC00473 expression was significantly down-regulated in hBMSCs from patients with SONFH compared with the controls, and that the upregulation of LINC00473 attenuated the inhibitory effects exerted by 1 µM Dex on the proliferation and apoptosis of hBMSCs. Moreover, the upregulation of LINC00473 significantly promoted the protein expression of phosphorylated (p-)Akt, p-Bcl-2-associated death promoter (p-Bad) and B-cell lymphoma 2 (Bcl-2), whereas it decreased the cleavage of caspase-3, thus preventing the Dex-induced apoptosis of hBMSCs. Of note, the regulatory effects of LINC00473 on the Akt/Bad/Bcl-2 signaling pathway and its anti-apoptotic effects were similar to those of SC79 (an Akt activator), and were inhibited by MK-2206 (an Akt inhibitor). In further experiments, it was found that the upregulation of LINC00473 markedly promoted the phosphorylation of Akt in Dex-stimulated hBMSCs, and increased the protein level of phosphatidylethanolamine-binding protein 1 (PEBP1). Alternatively, the promoting effect on Akt phosphorylation induced by LINC00473 was significantly attenuated following the knockdown of PEBP1. Furthermore, the upregulation of PEBP1 triggered a marked increase in the levels of Akt phosphorylation in Dex-stimulated hBMSCs, which was line with the upregulation of LINC00473. Taken together, the results of the present study demonstrate that LINC00473 has the ability to rescue hBMSCs from Dex-induced apoptosis through the PEBP1-mediated activation of the Akt/Bad/Bcl-2 signaling pathway. |
format | Online Article Text |
id | pubmed-7723501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-77235012020-12-23 LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway Xu, Yingxing Jiang, Yaping Wang, Yingzhen Zhao, Zhiping Li, Tao Int J Mol Med Articles The inhibition of the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells (BMSCs) triggered by the excessive use of glucocorticoids, is considered a potential mechanism for the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Long non-coding RNAs (lncRNAs) have been proven to influence the proliferation, apoptosis and differentiation of BMSCs by regulating the expression of critical genes. A previous microarray analysis by the authors confirmed the significant downregulation of LINC00473 in human BMSCs (hBMSCs) from patients with SONFH. However, the underlying role and molecular mechanisms of LINC00473 on dexamethasone (Dex)-stimulated hBMSCs remains unknown. In the present study, the expression of LINC00473 was determined in the hBMSCs of patients with SONFH and control patients. In addition, the protective effects and underlying molecular mechanisms of LINC00473 in Dex-stimulated hBMSCs were investigated. The results revealed that LINC00473 expression was significantly down-regulated in hBMSCs from patients with SONFH compared with the controls, and that the upregulation of LINC00473 attenuated the inhibitory effects exerted by 1 µM Dex on the proliferation and apoptosis of hBMSCs. Moreover, the upregulation of LINC00473 significantly promoted the protein expression of phosphorylated (p-)Akt, p-Bcl-2-associated death promoter (p-Bad) and B-cell lymphoma 2 (Bcl-2), whereas it decreased the cleavage of caspase-3, thus preventing the Dex-induced apoptosis of hBMSCs. Of note, the regulatory effects of LINC00473 on the Akt/Bad/Bcl-2 signaling pathway and its anti-apoptotic effects were similar to those of SC79 (an Akt activator), and were inhibited by MK-2206 (an Akt inhibitor). In further experiments, it was found that the upregulation of LINC00473 markedly promoted the phosphorylation of Akt in Dex-stimulated hBMSCs, and increased the protein level of phosphatidylethanolamine-binding protein 1 (PEBP1). Alternatively, the promoting effect on Akt phosphorylation induced by LINC00473 was significantly attenuated following the knockdown of PEBP1. Furthermore, the upregulation of PEBP1 triggered a marked increase in the levels of Akt phosphorylation in Dex-stimulated hBMSCs, which was line with the upregulation of LINC00473. Taken together, the results of the present study demonstrate that LINC00473 has the ability to rescue hBMSCs from Dex-induced apoptosis through the PEBP1-mediated activation of the Akt/Bad/Bcl-2 signaling pathway. D.A. Spandidos 2021-01 2020-11-11 /pmc/articles/PMC7723501/ /pubmed/33236136 http://dx.doi.org/10.3892/ijmm.2020.4788 Text en Copyright: © Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Xu, Yingxing Jiang, Yaping Wang, Yingzhen Zhao, Zhiping Li, Tao LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title | LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title_full | LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title_fullStr | LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title_full_unstemmed | LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title_short | LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1-mediated Akt/Bad/Bcl-2 signaling pathway |
title_sort | linc00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the pebp1-mediated akt/bad/bcl-2 signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723501/ https://www.ncbi.nlm.nih.gov/pubmed/33236136 http://dx.doi.org/10.3892/ijmm.2020.4788 |
work_keys_str_mv | AT xuyingxing linc00473rescueshumanbonemarrowmesenchymalstemcellsfromapoptosisinducedbydexamethasonethroughthepebp1mediatedaktbadbcl2signalingpathway AT jiangyaping linc00473rescueshumanbonemarrowmesenchymalstemcellsfromapoptosisinducedbydexamethasonethroughthepebp1mediatedaktbadbcl2signalingpathway AT wangyingzhen linc00473rescueshumanbonemarrowmesenchymalstemcellsfromapoptosisinducedbydexamethasonethroughthepebp1mediatedaktbadbcl2signalingpathway AT zhaozhiping linc00473rescueshumanbonemarrowmesenchymalstemcellsfromapoptosisinducedbydexamethasonethroughthepebp1mediatedaktbadbcl2signalingpathway AT litao linc00473rescueshumanbonemarrowmesenchymalstemcellsfromapoptosisinducedbydexamethasonethroughthepebp1mediatedaktbadbcl2signalingpathway |