Cargando…
Pharmacogenetic and safety analysis of cinacalcet hydrochloride in healthy Chinese subjects
BACKGROUND: Our study aims to explore the effect of genetics on the pharmacodynamics (PD) and pharmacokinetics (PK) of cinacalcet in healthy Chinese subjects; to investigate the effect of dietary factors on cinacalcet, and to evaluate the safety of cinacalcet under fasting and non-fasting conditions...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723585/ https://www.ncbi.nlm.nih.gov/pubmed/33313130 http://dx.doi.org/10.21037/atm-20-1329 |
Sumario: | BACKGROUND: Our study aims to explore the effect of genetics on the pharmacodynamics (PD) and pharmacokinetics (PK) of cinacalcet in healthy Chinese subjects; to investigate the effect of dietary factors on cinacalcet, and to evaluate the safety of cinacalcet under fasting and non-fasting conditions using a bioequivalence trial. METHODS: We investigated the relationship of cinacalcet PK with single nucleotide polymorphisms (SNPs) of CYP3A4, CYP1A2 and CYP2D6, and of cinacalcet PD with SNPs of calcium-sensitive receptors (CASR) and vitamin D receptors (VDR) in 65 healthy Chinese subjects recruited to participate in this study. Our study was a phase I, open-label, randomized, two-period, two-sequence crossover, a single-center clinical study designed under both fasting and non-fasting conditions to investigate the effect of dietary factors on cinacalcet. Plasma cinacalcet concentrations were analyzed using a validated HPLC-MS/MS assay. Clinical laboratory tests evaluated safety. Thirteen SNPs of CASR, VDR, and CYP genes were selected for pharmacogenetic analysis. RESULTS: CYP3A4 rs4646437 was found to be associated with the PK of cinacalcet under fasting conditions (P<0.01). Subjects carrying T alleles of rs4646437 appeared to metabolize cinacalcet poorly. The C(max) and AUC of subjects in the non-fasting group were significantly higher (P<0.0001) than those in the fasting group. The T(max), CL/F, and Vd/F in the fasting group were significantly higher (P<0.0001) than those in the non-fasting group. In the fasting group, the geometric least square mean ratios (T/R) of the C(max) and AUC(0-t) were 109.89% and 105.33%, and the corresponding 90% CIs were 98.36–122.79% and 98.04–113.15%, respectively. In the non-fasting group, the T/R of the C(max) and AUC(0-t) were 100.74% and 99.09%, and the corresponding 90% CIs were 92.65–109.54% and 94.79–103.58%, respectively. All adverse events (AEs) were mild, and no serious adverse events (SAEs) occurred during the bioequivalence trial. CONCLUSIONS: Following our investigation, we reached the following conclusions: CYP3A4 rs4646437 may affect cinacalcet PK; the reference and test preparations of cinacalcet were bioequivalent under fasting and non-fasting conditions and were safe to use; and dietary factors had a significant effect on the PK of cinacalcet, in that exposure to the drug increased when cinacalcet was taken after eating. |
---|