Cargando…

ncDRMarker: a computational method for identifying non-coding RNA signatures of drug resistance based on heterogeneous network

BACKGROUND: Drug resistance is the primary cause of failure in the treatment of cancer. Identifying signatures of chemoresistance will help to overcome this problem. Current drug resistance studies focus on protein-coding genes and ignore non-coding RNAs (ncRNAs), rendering it a challenging task to...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Haixiu, Xu, Yanjun, Shang, Desi, Shi, Hongbo, Zhang, Chunlong, Dong, Qun, Zhang, Yizheng, Bai, Ziyi, Cheng, Shujun, Li, Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723624/
https://www.ncbi.nlm.nih.gov/pubmed/33313140
http://dx.doi.org/10.21037/atm-20-603
Descripción
Sumario:BACKGROUND: Drug resistance is the primary cause of failure in the treatment of cancer. Identifying signatures of chemoresistance will help to overcome this problem. Current drug resistance studies focus on protein-coding genes and ignore non-coding RNAs (ncRNAs), rendering it a challenging task to systematically identify ncRNAs involved in drug resistance. METHODS: In this study, protein-protein, miRNA-target gene, miRNA-lncRNA interactions were integrated to construct a mRNA-miRNA-lncRNA network. Then, the random walk with restart (RWR) method was extended to the network for identifying ncRNA signatures of drug resistance. The leave-one-out cross validation (LOOCV) and receiver operating characteristic curve (ROC) were used to estimate the performance of ncDRMarker. Wilcoxon rank-sum test was used to validate the identified ncRNAs in NCI-60 cancer cell lines. KEGG pathway enrichment analysis was implemented to characterize the biological function of some identified ncRNAs. RESULTS: We performed this method on ten common clinical chemotherapy drugs and analyzed the results in detail. The region beneath the ROC was up to 0.881–0.951, which did not change significantly in the incomplete network, indicating the high performance and robustness of the method. Further, we confirmed the role of the identified ncRNAs in drug resistance, i.e., miR-92a-3p, a candidate chemoresistance ncRNA of tamoxifen and paclitaxel, can significantly classify cancer cell lines into sensitive or resistant to tamoxifen (or paclitaxel). We also dissected the mRNA-miRNA-lncRNA composite network and found that some hub ncRNAs, such as miR-124-3p, were involved in resistance of multiple drugs and engaged in many significant cancer-related pathways. Lastly, we have provided a ncDRMarker platform for users to identify candidate ncRNAs of drug resistance, which is available at http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index. CONCLUSIONS: Our findings suggest that ncDRMarker is an effective computational technique for prioritizing candidate ncRNAs of drug resistance. Additionally, the identified ncRNAs could be targeted to overcome drug resistance and help realize individualized treatment.