Cargando…
Identification of a Transcriptomic Prognostic Signature by Machine Learning Using a Combination of Small Cohorts of Prostate Cancer
Determining which treatment to provide to men with prostate cancer (PCa) is a major challenge for clinicians. Currently, the clinical risk-stratification for PCa is based on clinico-pathological variables such as Gleason grade, stage and prostate specific antigen (PSA) levels. But transcriptomic dat...
Autores principales: | Vittrant, Benjamin, Leclercq, Mickael, Martin-Magniette, Marie-Laure, Collins, Colin, Bergeron, Alain, Fradet, Yves, Droit, Arnaud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723980/ https://www.ncbi.nlm.nih.gov/pubmed/33324443 http://dx.doi.org/10.3389/fgene.2020.550894 |
Ejemplares similares
-
Large-Scale Automatic Feature Selection for Biomarker Discovery in High-Dimensional OMICs Data
por: Leclercq, Mickael, et al.
Publicado: (2019) -
Immune-focused multi-omics analysis of prostate cancer: leukocyte Ig-Like receptors are associated with disease progression
por: Vittrant, Benjamin, et al.
Publicado: (2020) -
Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation
por: Mathieu, Alban, et al.
Publicado: (2022) -
BioDiscViz: A visualization support and consensus signature selector for BioDiscML results
por: Bouirdene, Sophiane, et al.
Publicado: (2023) -
Statistical and Machine-Learning Analyses in Nutritional Genomics Studies
por: Khorraminezhad, Leila, et al.
Publicado: (2020)