Cargando…

Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism

Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q(...

Descripción completa

Detalles Bibliográficos
Autores principales: González-García, Pilar, Hidalgo-Gutiérrez, Agustín, Mascaraque, Cristina, Barriocanal-Casado, Eliana, Bakkali, Mohammed, Ziosi, Marcello, Abdihankyzy, Ussipbek Botagoz, Sánchez-Hernández, Sabina, Escames, Germaine, Prokisch, Holger, Martín, Francisco, Quinzii, Catarina M, López, Luis C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724311/
https://www.ncbi.nlm.nih.gov/pubmed/32975579
http://dx.doi.org/10.1093/hmg/ddaa214
Descripción
Sumario:Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q(10) (CoQ(10)) deficiency. This finding leads us to hypothesize that the therapeutic effects of CoQ(10), frequently administered to patients with primary or secondary mitochondrial dysfunction, might be due to its function as cofactor for sulfide:quinone oxidoreductase (SQOR), the first enzyme in the sulfide oxidation pathway. Here, using biased and unbiased approaches, we show that supraphysiological levels of CoQ(10) induces an increase in the expression of SQOR in skin fibroblasts from control subjects and patients with mutations in Complex I subunits genes or CoQ biosynthetic genes. This increase of SQOR induces the downregulation of the cystathionine β-synthase and cystathionine γ-lyase, two enzymes of the transsulfuration pathway, the subsequent downregulation of serine biosynthesis and the adaptation of other sulfide linked pathways, such as folate cycle, nucleotides metabolism and glutathione system. These metabolic changes are independent of the presence of sulfur aminoacids, are confirmed in mouse models, and are recapitulated by overexpression of SQOR, further proving that the metabolic effects of CoQ(10) supplementation are mediated by the overexpression of SQOR. Our results contribute to a better understanding of how sulfide metabolism is integrated in one carbon metabolism and may explain some of the benefits of CoQ(10) supplementation observed in mitochondrial diseases.