Cargando…

Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization

The nucleolus is the largest compartment of the eukaryotic cell's nucleus. It acts as a ribosome factory, thereby sustaining the translation machinery. The nucleolus is also the subnuclear compartment with the highest transcriptional activity in the cell, where hundreds of ribosomal RNA (rRNA)...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Shivani, Santoro, Raffaella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724472/
https://www.ncbi.nlm.nih.gov/pubmed/32976768
http://dx.doi.org/10.1016/j.stemcr.2020.08.012
Descripción
Sumario:The nucleolus is the largest compartment of the eukaryotic cell's nucleus. It acts as a ribosome factory, thereby sustaining the translation machinery. The nucleolus is also the subnuclear compartment with the highest transcriptional activity in the cell, where hundreds of ribosomal RNA (rRNA) genes transcribe the overwhelming majority of RNAs. The structure and composition of the nucleolus change according to the developmental state. For instance, in embryonic stem cells (ESCs), rRNA genes display a hyperactive transcriptional state and open chromatin structure compared with differentiated cells. Increasing evidence indicates that the role of the nucleolus and rRNA genes might go beyond the control of ribosome biogenesis. One such role is linked to the genome architecture, since repressive domains are often located close to the nucleolus. This review highlights recent findings describing how the nucleolus is regulated in ESCs and its role in regulating ribosome biogenesis and genome organization for the maintenance of stem cell identity.