Cargando…

Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin

The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore S...

Descripción completa

Detalles Bibliográficos
Autores principales: Harikumar, Arigela, Lim, Patrick S.L., Nissim-Rafinia, Malka, Park, Jung Eun, Sze, Siu Kwan, Meshorer, Eran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724474/
https://www.ncbi.nlm.nih.gov/pubmed/33296674
http://dx.doi.org/10.1016/j.stemcr.2020.11.004
Descripción
Sumario:The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.