Cargando…
Risk Factors for Patient–Ventilator Asynchrony and Its Impact on Clinical Outcomes: Analytics Based on Deep Learning Algorithm
Background and objectives: Patient–ventilator asynchronies (PVAs) are common in mechanically ventilated patients. However, the epidemiology of PVAs and its impact on clinical outcome remains controversial. The current study aims to evaluate the epidemiology and risk factors of PVAs and their impact...
Autores principales: | Ge, Huiqing, Duan, Kailiang, Wang, Jimei, Jiang, Liuqing, Zhang, Lingwei, Zhou, Yuhan, Fang, Luping, Heunks, Leo M. A., Pan, Qing, Zhang, Zhongheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724969/ https://www.ncbi.nlm.nih.gov/pubmed/33324663 http://dx.doi.org/10.3389/fmed.2020.597406 |
Ejemplares similares
-
Identifying Patient–Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning
por: Pan, Qing, et al.
Publicado: (2021) -
Lung Mechanics of Mechanically Ventilated Patients With COVID-19: Analytics With High-Granularity Ventilator Waveform Data
por: Ge, Huiqing, et al.
Publicado: (2020) -
Patient-ventilator asynchrony
por: Holanda, Marcelo Alcantara, et al.
Publicado: (2018) -
Cumulative oxygen deficit is a novel predictor for the timing of invasive mechanical ventilation in COVID-19 patients with respiratory distress
por: Ge, Huiqing, et al.
Publicado: (2020) -
Efficacy of ventilator waveform observation for detection of patient–ventilator asynchrony during NIV: a multicentre study
por: Longhini, Federico, et al.
Publicado: (2017)