Cargando…

A comprehensive human minimal gut metagenome extends the host’s metabolic potential

Accumulating evidence suggests that humans could be considered as holobionts in which the gut microbiota play essential functions. Initial metagenomic studies reported a pattern of shared genes in the gut microbiome of different individuals, leading to the definition of the minimal gut metagenome as...

Descripción completa

Detalles Bibliográficos
Autores principales: Parras-Moltó, Marcos, Aguirre de Cárcer, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725322/
https://www.ncbi.nlm.nih.gov/pubmed/33141656
http://dx.doi.org/10.1099/mgen.0.000466
Descripción
Sumario:Accumulating evidence suggests that humans could be considered as holobionts in which the gut microbiota play essential functions. Initial metagenomic studies reported a pattern of shared genes in the gut microbiome of different individuals, leading to the definition of the minimal gut metagenome as the set of microbial genes necessary for homeostasis and present in all healthy individuals. This study analyses the minimal gut metagenome of the most comprehensive dataset available, including individuals from agriculturalist and industrialist societies, also embodying highly diverse ethnic and geographical backgrounds. The outcome, based on metagenomic predictions for community composition data, resulted in a minimal metagenome comprising 3412 genes, mapping to 1856 reactions and 128 metabolic pathways predicted to occur across all individuals. These results were substantiated by the analysis of two additional datasets describing the microbial community compositions of larger Western cohorts, as well as a substantial shotgun metagenomics dataset. Subsequent analyses showed the plausible metabolic complementarity provided by the minimal gut metagenome to the human genome.