Cargando…
Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution
In this work, we study the Sakaguchi-Kuramoto model with natural frequency following a bimodal distribution. By using Ott-Antonsen ansatz, we reduce the globally coupled phase oscillators to low dimensional coupled ordinary differential equations. For symmetrical bimodal frequency distribution, we a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725404/ https://www.ncbi.nlm.nih.gov/pubmed/33296390 http://dx.doi.org/10.1371/journal.pone.0243196 |
Sumario: | In this work, we study the Sakaguchi-Kuramoto model with natural frequency following a bimodal distribution. By using Ott-Antonsen ansatz, we reduce the globally coupled phase oscillators to low dimensional coupled ordinary differential equations. For symmetrical bimodal frequency distribution, we analyze the stabilities of the incoherent state and different partial synchronous states. Different types of bifurcations are identified and the effect of the phase lag on the dynamics is investigated. For asymmetrical bimodal frequency distribution, we observe the revival of the incoherent state, and then the conditions for the revival are specified. |
---|