Cargando…

Mint3 is dispensable for pancreatic and kidney functions in mice

Munc-18 interacting protein 3 (Mint3) is an activator of hypoxia-inducible factor-1 in cancer cells, macrophages, and cancer-associated fibroblasts under pathological conditions. However, exactly which cells highly express Mint3 in vivo and whether Mint3 depletion affects their physiological functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Yoohwa, Saitoh, Yurika, Hayashi, Tetsuro, Fukui, Yuya, Terada, Nobuo, Seiki, Motoharu, Murakami, Yoshinori, Sakamoto, Takeharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725678/
https://www.ncbi.nlm.nih.gov/pubmed/33319072
http://dx.doi.org/10.1016/j.bbrep.2020.100872
Descripción
Sumario:Munc-18 interacting protein 3 (Mint3) is an activator of hypoxia-inducible factor-1 in cancer cells, macrophages, and cancer-associated fibroblasts under pathological conditions. However, exactly which cells highly express Mint3 in vivo and whether Mint3 depletion affects their physiological functions remain unclear. Here, we surveyed mouse tissues for specific expression of Mint3 by comparing Mint3 expression in wild-type and Mint3-knockout mice. Interestingly, immunohistochemical analyses revealed that Mint3 was highly expressed in islet cells of the pancreas, distal tubular epithelia of the kidney, choroid plexus ependymal cells of the cerebrum, medullary cells of the adrenal gland, and epithelial cells of the seminal gland. We also studied whether Mint3 depletion affects the physiological functions of the islets and kidneys. Mint3-knockout mice did not show any abnormalities in glucose-tolerance and urine-biochemical tests, indicating that Mint3 depletion was compensated for in these organs. Thus, loss of Mint3 might be compensated in the islets and kidneys under physiological conditions in mice.