Cargando…
Two-stage maximum likelihood approach for item-level missing data in regression
Psychologists use scales comprised of multiple items to measure underlying constructs. Missing data on such scales often occur at the item level, whereas the model of interest to the researcher is at the composite (scale score) level. Existing analytic approaches cannot easily accommodate item-level...
Autores principales: | Chen, Lihan, Savalei, Victoria, Rhemtulla, Mijke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725695/ https://www.ncbi.nlm.nih.gov/pubmed/32333330 http://dx.doi.org/10.3758/s13428-020-01355-x |
Ejemplares similares
-
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
por: Savalei, Victoria, et al.
Publicado: (2017) -
Normal Theory GLS Estimator for Missing Data: An Application to Item-Level Missing Data and a Comparison to Two-Stage ML
por: Savalei, Victoria, et al.
Publicado: (2017) -
Three Sample Estimates of Fraction of Missing Information From Full Information Maximum Likelihood
por: Chen, Lihan, et al.
Publicado: (2021) -
Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
por: Zeng, Donglin, et al.
Publicado: (2017) -
A modern maximum-likelihood theory for high-dimensional logistic regression
por: Sur, Pragya, et al.
Publicado: (2019)