Cargando…
Identifying patterns in urban housing density in developing countries using convolutional networks and satellite imagery
The use of Deep Neural Networks for remote sensing scene image analysis is growing fast. Despite this, data sets on developing countries are conspicuously absent in the public domain for benchmarking machine learning algorithms, rendering existing data sets unrepresentative. Secondly, current litera...
Autores principales: | Sanya, Rahman, Mwebaze, Ernest |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725730/ https://www.ncbi.nlm.nih.gov/pubmed/33319091 http://dx.doi.org/10.1016/j.heliyon.2020.e05617 |
Ejemplares similares
-
Residential scene classification for gridded population sampling in developing countries using deep convolutional neural networks on satellite imagery
por: Chew, Robert F., et al.
Publicado: (2018) -
Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network
por: Xiao, Aoran, et al.
Publicado: (2018) -
Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery
por: Marquez, L., et al.
Publicado: (2022) -
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Monitoring of urban ecological environment including air quality using satellite imagery
por: Wang, Yuan, et al.
Publicado: (2022)