Cargando…
Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases
Here, we present the data on the biological effects of Hyptis spp. and Lycium spp. plant extracts in Caenorhabditis elegans (C. elegans) models of neurodegenerative diseases, which is related to the work presented in the article “Neurotherapeutic effect of Hyptis spp. leaf extracts in C. elegans mod...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725741/ https://www.ncbi.nlm.nih.gov/pubmed/33318982 http://dx.doi.org/10.1016/j.dib.2020.106598 |
_version_ | 1783620763466596352 |
---|---|
author | Vilasboas-Campos, Daniela Costa, Marta Daniela Teixeira-Castro, Andreia Rios, Rejaine Silva, Fabiano Guimarães Aierken, Aili Zhang, Xiaoying Bessa, Carlos Dias, Alberto C.P. Maciel, Patrícia |
author_facet | Vilasboas-Campos, Daniela Costa, Marta Daniela Teixeira-Castro, Andreia Rios, Rejaine Silva, Fabiano Guimarães Aierken, Aili Zhang, Xiaoying Bessa, Carlos Dias, Alberto C.P. Maciel, Patrícia |
author_sort | Vilasboas-Campos, Daniela |
collection | PubMed |
description | Here, we present the data on the biological effects of Hyptis spp. and Lycium spp. plant extracts in Caenorhabditis elegans (C. elegans) models of neurodegenerative diseases, which is related to the work presented in the article “Neurotherapeutic effect of Hyptis spp. leaf extracts in C. elegans models of tauopathy and polyglutamine disease: role of the glutathione redox cycle” [1]. This dataset was generated to define non-toxic concentrations of these plant extracts and to assess their impact on the motor phenotype and oxidative stress resistance of transgenic C. elegans models of two genetically defined neurodegenerative diseases: Machado-Joseph disease and Frontotemporal dementia with Parkinsonism associated to the chromosome 17. The impact of the plant extracts on toxicity was assessed using the food-clearance assay, absorbance being measured daily for seven days at 595 nm to quantify Escherichia coli (E. coli) strain OP50 bacteria consumption. Worm length and motor behaviour, including spontaneous and stimulated movement, were analysed using videos acquired with an Olympus SZX7 stereomicroscope with an integrated camera (Olympus SC30) and processed using the Image J® software and the Wrmtrck plugin. The resistance to oxidative stress induced by 240 µM juglone was assessed by determining the percentage of live animals after 1 hour of exposure. |
format | Online Article Text |
id | pubmed-7725741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77257412020-12-13 Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases Vilasboas-Campos, Daniela Costa, Marta Daniela Teixeira-Castro, Andreia Rios, Rejaine Silva, Fabiano Guimarães Aierken, Aili Zhang, Xiaoying Bessa, Carlos Dias, Alberto C.P. Maciel, Patrícia Data Brief Data Article Here, we present the data on the biological effects of Hyptis spp. and Lycium spp. plant extracts in Caenorhabditis elegans (C. elegans) models of neurodegenerative diseases, which is related to the work presented in the article “Neurotherapeutic effect of Hyptis spp. leaf extracts in C. elegans models of tauopathy and polyglutamine disease: role of the glutathione redox cycle” [1]. This dataset was generated to define non-toxic concentrations of these plant extracts and to assess their impact on the motor phenotype and oxidative stress resistance of transgenic C. elegans models of two genetically defined neurodegenerative diseases: Machado-Joseph disease and Frontotemporal dementia with Parkinsonism associated to the chromosome 17. The impact of the plant extracts on toxicity was assessed using the food-clearance assay, absorbance being measured daily for seven days at 595 nm to quantify Escherichia coli (E. coli) strain OP50 bacteria consumption. Worm length and motor behaviour, including spontaneous and stimulated movement, were analysed using videos acquired with an Olympus SZX7 stereomicroscope with an integrated camera (Olympus SC30) and processed using the Image J® software and the Wrmtrck plugin. The resistance to oxidative stress induced by 240 µM juglone was assessed by determining the percentage of live animals after 1 hour of exposure. Elsevier 2020-11-28 /pmc/articles/PMC7725741/ /pubmed/33318982 http://dx.doi.org/10.1016/j.dib.2020.106598 Text en © 2020 Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Data Article Vilasboas-Campos, Daniela Costa, Marta Daniela Teixeira-Castro, Andreia Rios, Rejaine Silva, Fabiano Guimarães Aierken, Aili Zhang, Xiaoying Bessa, Carlos Dias, Alberto C.P. Maciel, Patrícia Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title | Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title_full | Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title_fullStr | Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title_full_unstemmed | Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title_short | Data on the effects of Hyptis spp. and Lycium spp. plant extracts in C. elegans models of genetically determined neurodegenerative diseases |
title_sort | data on the effects of hyptis spp. and lycium spp. plant extracts in c. elegans models of genetically determined neurodegenerative diseases |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725741/ https://www.ncbi.nlm.nih.gov/pubmed/33318982 http://dx.doi.org/10.1016/j.dib.2020.106598 |
work_keys_str_mv | AT vilasboascamposdaniela dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT costamartadaniela dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT teixeiracastroandreia dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT riosrejaine dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT silvafabianoguimaraes dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT aierkenaili dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT zhangxiaoying dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT bessacarlos dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT diasalbertocp dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases AT macielpatricia dataontheeffectsofhyptissppandlyciumsppplantextractsincelegansmodelsofgeneticallydeterminedneurodegenerativediseases |