Cargando…
HI-Light: A Glass-Waveguide-Based “Shell-and-Tube” Photothermal Reactor Platform for Converting CO(2) to Fuels
In this work, we introduce HI-Light, a surface-engineered glass-waveguide-based “shell-and-tube” type photothermal reactor which is both scalable in diameter and length. We examine the effect of temperature, light irradiation, and residence time on its photo-thermocatalytic performance for CO(2) hyd...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725935/ https://www.ncbi.nlm.nih.gov/pubmed/33319177 http://dx.doi.org/10.1016/j.isci.2020.101856 |
Sumario: | In this work, we introduce HI-Light, a surface-engineered glass-waveguide-based “shell-and-tube” type photothermal reactor which is both scalable in diameter and length. We examine the effect of temperature, light irradiation, and residence time on its photo-thermocatalytic performance for CO(2) hydrogenation to form CO, with a cubic phase defect-laden indium oxide, In2O3-x(OH)y, catalyst. We demonstrate the light enhancement effect under a variety of reaction conditions. Notably, the light-on performance for the cubic nanocrystal photocatalyst exhibits a CO evolution rate at 15.40 mmol g(cat)(−1) hr(−1) at 300°C and atmospheric pressure. This is 20 times higher conversion rate per unit catalyst mass per unit time beyond previously reported In2O3-x(OH)y catalyst in the cubic form under comparable operation conditions and more than 5 times higher than that of its rhombohedral polymorph. This result underscores that improvement in photo-thermocatalytic reactor design enables uniform light distribution and better reactant/catalyst mixing, thus significantly improving catalyst utilization. |
---|