Cargando…
Emerging Materials for Neuromorphic Devices and Systems
Neuromorphic devices and systems have attracted attention as next-generation computing due to their high efficiency in processing complex data. So far, they have been demonstrated using both machine-learning software and complementary metal-oxide-semiconductor-based hardware. However, these approach...
Autores principales: | Kim, Min-Kyu, Park, Youngjun, Kim, Ik-Jyae, Lee, Jang-Sik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725950/ https://www.ncbi.nlm.nih.gov/pubmed/33319174 http://dx.doi.org/10.1016/j.isci.2020.101846 |
Ejemplares similares
-
Defect Engineering of Hafnia-Based Ferroelectric Materials
for High-Endurance Memory Applications
por: Kim, Min-Kyu, et al.
Publicado: (2023) -
Progress of Materials and Devices for Neuromorphic Vision Sensors
por: Cho, Sung Woon, et al.
Publicado: (2022) -
CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory
por: Kim, Min-Kyu, et al.
Publicado: (2021) -
CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks
por: Kim, Min-Kyu, et al.
Publicado: (2022) -
Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks
por: Kim, Ik-Jyae, et al.
Publicado: (2023)