Cargando…

Asymmetric construction of tetrahedral chiral zinc with high configurational stability and catalytic activity

Chiral metal complexes show promise as asymmetric catalysts and optical materials. Chiral-at-metal complexes composed of achiral ligands have expanded the versatility and applicability of chiral metal complexes, especially for octahedral and half-sandwich complexes. However, Werner-type tetrahedral...

Descripción completa

Detalles Bibliográficos
Autores principales: Endo, Kenichi, Liu, Yuanfei, Ube, Hitoshi, Nagata, Koichi, Shionoya, Mitsuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726038/
https://www.ncbi.nlm.nih.gov/pubmed/33298960
http://dx.doi.org/10.1038/s41467-020-20074-7
Descripción
Sumario:Chiral metal complexes show promise as asymmetric catalysts and optical materials. Chiral-at-metal complexes composed of achiral ligands have expanded the versatility and applicability of chiral metal complexes, especially for octahedral and half-sandwich complexes. However, Werner-type tetrahedral complexes with a stereogenic metal centre are rarely used as chiral-at-metal complexes because they are too labile to ensure the absolute configuration of the metal centre. Here we report the asymmetric construction of a tetrahedral chiral-at-zinc complex with high configurational stability, using an unsymmetric tridentate ligand. Coordination/substitution of a chiral auxiliary ligand on zinc followed by crystallisation yields an enantiopure chiral-only-at-zinc complex (> 99% ee). The enantiomer excess remains very high at 99% ee even after heating at 70 °C in benzene for one week. With this configurationally stable zinc complex of the tridentate ligand, the remaining one labile site on the zinc can be used for a highly selective asymmetric oxa-Diels-Alder reaction (98% yield, 87% ee) without substantial racemisation.