Cargando…
Radiology artificial intelligence, a systematic evaluation of methods (RAISE): a systematic review protocol
INTRODUCTION: There has been a recent explosion of research into the field of artificial intelligence as applied to clinical radiology with the advent of highly accurate computer vision technology. These studies, however, vary significantly in design and quality. While recent guidelines have been es...
Autores principales: | Kelly, Brendan, Judge, Conor, Bollard, Stephanie M., Clifford, Simon M., Healy, Gerard M., Yeom, Kristen W., Lawlor, Aonghus, Killeen, Ronan P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726044/ https://www.ncbi.nlm.nih.gov/pubmed/33296033 http://dx.doi.org/10.1186/s13244-020-00929-9 |
Ejemplares similares
-
Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Correction to: Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Cybersecurity considerations for radiology departments involved with artificial intelligence
por: Kelly, Brendan S., et al.
Publicado: (2023) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
por: Kelly, Brendan S., et al.
Publicado: (2023)