Cargando…
SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
Research on undersampled magnetic resonance image (MRI) reconstruction can increase the speed of MRI imaging and reduce patient suffering. In this paper, an undersampled MRI reconstruction method based on Generative Adversarial Networks with the Self-Attention mechanism and the Relative Average disc...
Autores principales: | Yuan, Zhenmou, Jiang, Mingfeng, Wang, Yaming, Wei, Bo, Li, Yongming, Wang, Pin, Menpes-Smith, Wade, Niu, Zhangming, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726262/ https://www.ncbi.nlm.nih.gov/pubmed/33324189 http://dx.doi.org/10.3389/fninf.2020.611666 |
Ejemplares similares
-
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation
por: Kearney, Vasant, et al.
Publicado: (2020) -
Evaluation of GAN-Based Model for Adversarial Training
por: Zhao, Weimin, et al.
Publicado: (2023) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
PRAGAN: Progressive Recurrent Attention GAN with Pretrained ViT Discriminator for Single-Image Deraining
por: Wei, Bingcai, et al.
Publicado: (2022)