Cargando…
Fluorine-based color centers in diamond
We report on the creation and characterization of the luminescence properties of high-purity diamond substrates upon F ion implantation and subsequent thermal annealing. Their room-temperature photoluminescence emission consists of a weak emission line at 558 nm and of intense bands in the 600–750 n...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726554/ https://www.ncbi.nlm.nih.gov/pubmed/33298995 http://dx.doi.org/10.1038/s41598-020-78436-6 |
Sumario: | We report on the creation and characterization of the luminescence properties of high-purity diamond substrates upon F ion implantation and subsequent thermal annealing. Their room-temperature photoluminescence emission consists of a weak emission line at 558 nm and of intense bands in the 600–750 nm spectral range. Characterization at liquid He temperature reveals the presence of a structured set of lines in the 600–670 nm spectral range. We discuss the dependence of the emission properties of F-related optical centers on different experimental parameters such as the operating temperature and the excitation wavelength. The correlation of the emission intensity with F implantation fluence, and the exclusive observation of the afore-mentioned spectral features in F-implanted and annealed samples provides a strong indication that the observed emission features are related to a stable F-containing defective complex in the diamond lattice. |
---|