Cargando…
One pot facile transformation of CO(2) to an unusual 3-D nano-scaffold morphology of carbon
An electrosynthesis is presented to transform CO(2) into an unusual nano and micron dimensioned morphology of carbon, termed Carbon Nano-Scaffold (CNS) with wide a range of high surface area graphene potential usages including batteries, supercapacitors, compression devices, electromagnetic wave shi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726567/ https://www.ncbi.nlm.nih.gov/pubmed/33298989 http://dx.doi.org/10.1038/s41598-020-78258-6 |
Sumario: | An electrosynthesis is presented to transform CO(2) into an unusual nano and micron dimensioned morphology of carbon, termed Carbon Nano-Scaffold (CNS) with wide a range of high surface area graphene potential usages including batteries, supercapacitors, compression devices, electromagnetic wave shielding and sensors. Current CNS value is over $323 per milligram. The morphology consists of a series of asymmetric 20 to 100 nm thick flat multilayer graphene platelets 2 to 20 µm long orthogonally oriented in a 3D neoplasticism-like geometry, and appears distinct from the honeycomb, foam, or balsa wood cell structures previously attributed to carbon scaffolds. The CNS synthesis splits CO(2) by electrolysis in molten carbonate and has a carbon negative footprint. It is observed that transition metal nucleated, high yield growth of carbon nanotubes (CNTs) is inhibited in electrolytes containing over 50 wt% of sodium or 30 wt% of potassium carbonate, or at electrolysis temperatures less than 700 °C. Here, it is found that a lower temperature of synthesis, lower concentrations of lithium carbonate, and higher current density promotes CNS growth while suppressing CNT growth. Electrolyte conditions of 50 wt% sodium carbonate relative to lithium carbonate at an electrolysis temperature of 670 °C produced over 80% of the CNS desired product at 85% faradaic efficiency with a Muntz brass cathode and an Inconel anode. |
---|