Cargando…

GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data

Most methods for inferring gene-gene interactions from expression data focus on intracellular interactions. The availability of high-throughput spatial expression data opens the door to methods that can infer such interactions both within and between cells. To achieve this, we developed Graph Convol...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Ye, Bar-Joseph, Ziv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726911/
https://www.ncbi.nlm.nih.gov/pubmed/33303016
http://dx.doi.org/10.1186/s13059-020-02214-w
Descripción
Sumario:Most methods for inferring gene-gene interactions from expression data focus on intracellular interactions. The availability of high-throughput spatial expression data opens the door to methods that can infer such interactions both within and between cells. To achieve this, we developed Graph Convolutional Neural networks for Genes (GCNG). GCNG encodes the spatial information as a graph and combines it with expression data using supervised training. GCNG improves upon prior methods used to analyze spatial transcriptomics data and can propose novel pairs of extracellular interacting genes. The output of GCNG can also be used for downstream analysis including functional gene assignment. Supporting website with software and data: https://github.com/xiaoyeye/GCNG.