Cargando…
Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data
OBJECTIVE: In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and...
Autores principales: | Tang, Shengpu, Davarmanesh, Parmida, Song, Yanmeng, Koutra, Danai, Sjoding, Michael W, Wiens, Jenna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727385/ https://www.ncbi.nlm.nih.gov/pubmed/33040151 http://dx.doi.org/10.1093/jamia/ocaa139 |
Ejemplares similares
-
Deep learning-based NLP data pipeline for EHR-scanned document information extraction
por: Hsu, Enshuo, et al.
Publicado: (2022) -
350. Joint Modeling of EHR and CXR Data to Predict COVID-19 Deterioration
por: Mu, Emily, et al.
Publicado: (2021) -
scPipe: an extended preprocessing pipeline for comprehensive single-cell ATAC-Seq data integration in R/Bioconductor
por: Amarasinghe, Shanika L, et al.
Publicado: (2023) -
A federated EHR network data completeness tracking system
por: Estiri, Hossein, et al.
Publicado: (2019) -
Evaluation of multidisciplinary collaboration in pediatric trauma care using EHR data
por: Durojaiye, Ashimiyu B, et al.
Publicado: (2019)