Cargando…

Publishing Video Data with Indistinguishable Objects

Millions of videos are ubiquitously generated and shared everyday. Releasing videos would be greatly beneficial to social interactions and the community but may result in severe privacy concerns. To the best of our knowledge, most of the existing privacy preserving techniques for video data focus on...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Han, Kong, Yu, Hong, Yuan, Vaidya, Jaideep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727468/
https://www.ncbi.nlm.nih.gov/pubmed/33313601
http://dx.doi.org/10.5441/002/edbt.2020.29
Descripción
Sumario:Millions of videos are ubiquitously generated and shared everyday. Releasing videos would be greatly beneficial to social interactions and the community but may result in severe privacy concerns. To the best of our knowledge, most of the existing privacy preserving techniques for video data focus on detecting and blurring the sensitive regions in the video. Such simple privacy models have two major limitations: (1) they cannot quantify and bound the privacy risks, and (2) they cannot address the inferences drawn from the background knowledge on the involved objects in the videos. In this paper, we first define a novel privacy notion ϵ-Object Indistinguishability for all the predefined sensitive objects (e.g., humans and vehicles) in the video, and then propose a video sanitization technique VERRO that randomly generates utility-driven synthetic videos with indistinguishable objects. Therefore, all the objects can be well protected in the generated utility-driven synthetic videos which can be disclosed to any untrusted video recipient. We have conducted extensive experiments on three real videos captured for pedestrians on the streets. The experimental results demonstrate that the generated synthetic videos lie close to the original video for retaining good utility while ensuring rigorous privacy guarantee.