Cargando…
Reducing Response Time in Motor Imagery Using A Headband and Deep Learning †
Electroencephalography (EEG) signals to detect motor imagery have been used to help patients with low mobility. However, the regular brain computer interfaces (BCI) capturing the EEG signals usually require intrusive devices and cables linked to machines. Recently, some commercial low-intrusive BCI...
Autores principales: | Garcia-Moreno, Francisco M., Bermudez-Edo, Maria, Garrido, José Luis, Rodríguez-Fórtiz, María José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728142/ https://www.ncbi.nlm.nih.gov/pubmed/33255578 http://dx.doi.org/10.3390/s20236730 |
Ejemplares similares
-
A Microservices e-Health System for Ecological Frailty Assessment Using Wearables †
por: Garcia-Moreno, Francisco M., et al.
Publicado: (2020) -
A Deep Learning Strategy for Automatic Sleep Staging Based on Two-Channel EEG Headband Data
por: Casciola, Amelia A., et al.
Publicado: (2021) -
On the Better Performance of Pianists with Motor Imagery-Based Brain-Computer Interface Systems
por: Riquelme-Ros, José-Vicente, et al.
Publicado: (2020) -
An Ultra-Low Power Smart Headband for Real-Time Epileptic Seizure Detection
Publicado: (2018) -
Assessment of a wireless headband for automatic sleep scoring
por: Griessenberger, H., et al.
Publicado: (2012)