Cargando…

The Effect of Predeformation on Creep Strength of 9% Cr Steel

Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found t...

Descripción completa

Detalles Bibliográficos
Autores principales: Král, Petr, Dvořák, Jiří, Blum, Wolfgang, Sklenička, Václav, Horita, Zenji, Takizawa, Yoichi, Tang, Yongpeng, Kunčická, Lenka, Kocich, Radim, Kvapilová, Marie, Svobodová, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728157/
https://www.ncbi.nlm.nih.gov/pubmed/33255598
http://dx.doi.org/10.3390/ma13235330
_version_ 1783621213694722048
author Král, Petr
Dvořák, Jiří
Blum, Wolfgang
Sklenička, Václav
Horita, Zenji
Takizawa, Yoichi
Tang, Yongpeng
Kunčická, Lenka
Kocich, Radim
Kvapilová, Marie
Svobodová, Marie
author_facet Král, Petr
Dvořák, Jiří
Blum, Wolfgang
Sklenička, Václav
Horita, Zenji
Takizawa, Yoichi
Tang, Yongpeng
Kunčická, Lenka
Kocich, Radim
Kvapilová, Marie
Svobodová, Marie
author_sort Král, Petr
collection PubMed
description Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and grain coarsening during creep.
format Online
Article
Text
id pubmed-7728157
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77281572020-12-11 The Effect of Predeformation on Creep Strength of 9% Cr Steel Král, Petr Dvořák, Jiří Blum, Wolfgang Sklenička, Václav Horita, Zenji Takizawa, Yoichi Tang, Yongpeng Kunčická, Lenka Kocich, Radim Kvapilová, Marie Svobodová, Marie Materials (Basel) Article Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and grain coarsening during creep. MDPI 2020-11-25 /pmc/articles/PMC7728157/ /pubmed/33255598 http://dx.doi.org/10.3390/ma13235330 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Král, Petr
Dvořák, Jiří
Blum, Wolfgang
Sklenička, Václav
Horita, Zenji
Takizawa, Yoichi
Tang, Yongpeng
Kunčická, Lenka
Kocich, Radim
Kvapilová, Marie
Svobodová, Marie
The Effect of Predeformation on Creep Strength of 9% Cr Steel
title The Effect of Predeformation on Creep Strength of 9% Cr Steel
title_full The Effect of Predeformation on Creep Strength of 9% Cr Steel
title_fullStr The Effect of Predeformation on Creep Strength of 9% Cr Steel
title_full_unstemmed The Effect of Predeformation on Creep Strength of 9% Cr Steel
title_short The Effect of Predeformation on Creep Strength of 9% Cr Steel
title_sort effect of predeformation on creep strength of 9% cr steel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728157/
https://www.ncbi.nlm.nih.gov/pubmed/33255598
http://dx.doi.org/10.3390/ma13235330
work_keys_str_mv AT kralpetr theeffectofpredeformationoncreepstrengthof9crsteel
AT dvorakjiri theeffectofpredeformationoncreepstrengthof9crsteel
AT blumwolfgang theeffectofpredeformationoncreepstrengthof9crsteel
AT sklenickavaclav theeffectofpredeformationoncreepstrengthof9crsteel
AT horitazenji theeffectofpredeformationoncreepstrengthof9crsteel
AT takizawayoichi theeffectofpredeformationoncreepstrengthof9crsteel
AT tangyongpeng theeffectofpredeformationoncreepstrengthof9crsteel
AT kuncickalenka theeffectofpredeformationoncreepstrengthof9crsteel
AT kocichradim theeffectofpredeformationoncreepstrengthof9crsteel
AT kvapilovamarie theeffectofpredeformationoncreepstrengthof9crsteel
AT svobodovamarie theeffectofpredeformationoncreepstrengthof9crsteel
AT kralpetr effectofpredeformationoncreepstrengthof9crsteel
AT dvorakjiri effectofpredeformationoncreepstrengthof9crsteel
AT blumwolfgang effectofpredeformationoncreepstrengthof9crsteel
AT sklenickavaclav effectofpredeformationoncreepstrengthof9crsteel
AT horitazenji effectofpredeformationoncreepstrengthof9crsteel
AT takizawayoichi effectofpredeformationoncreepstrengthof9crsteel
AT tangyongpeng effectofpredeformationoncreepstrengthof9crsteel
AT kuncickalenka effectofpredeformationoncreepstrengthof9crsteel
AT kocichradim effectofpredeformationoncreepstrengthof9crsteel
AT kvapilovamarie effectofpredeformationoncreepstrengthof9crsteel
AT svobodovamarie effectofpredeformationoncreepstrengthof9crsteel