Cargando…
The Effect of Predeformation on Creep Strength of 9% Cr Steel
Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728157/ https://www.ncbi.nlm.nih.gov/pubmed/33255598 http://dx.doi.org/10.3390/ma13235330 |
_version_ | 1783621213694722048 |
---|---|
author | Král, Petr Dvořák, Jiří Blum, Wolfgang Sklenička, Václav Horita, Zenji Takizawa, Yoichi Tang, Yongpeng Kunčická, Lenka Kocich, Radim Kvapilová, Marie Svobodová, Marie |
author_facet | Král, Petr Dvořák, Jiří Blum, Wolfgang Sklenička, Václav Horita, Zenji Takizawa, Yoichi Tang, Yongpeng Kunčická, Lenka Kocich, Radim Kvapilová, Marie Svobodová, Marie |
author_sort | Král, Petr |
collection | PubMed |
description | Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and grain coarsening during creep. |
format | Online Article Text |
id | pubmed-7728157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77281572020-12-11 The Effect of Predeformation on Creep Strength of 9% Cr Steel Král, Petr Dvořák, Jiří Blum, Wolfgang Sklenička, Václav Horita, Zenji Takizawa, Yoichi Tang, Yongpeng Kunčická, Lenka Kocich, Radim Kvapilová, Marie Svobodová, Marie Materials (Basel) Article Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and grain coarsening during creep. MDPI 2020-11-25 /pmc/articles/PMC7728157/ /pubmed/33255598 http://dx.doi.org/10.3390/ma13235330 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Král, Petr Dvořák, Jiří Blum, Wolfgang Sklenička, Václav Horita, Zenji Takizawa, Yoichi Tang, Yongpeng Kunčická, Lenka Kocich, Radim Kvapilová, Marie Svobodová, Marie The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title | The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title_full | The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title_fullStr | The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title_full_unstemmed | The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title_short | The Effect of Predeformation on Creep Strength of 9% Cr Steel |
title_sort | effect of predeformation on creep strength of 9% cr steel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728157/ https://www.ncbi.nlm.nih.gov/pubmed/33255598 http://dx.doi.org/10.3390/ma13235330 |
work_keys_str_mv | AT kralpetr theeffectofpredeformationoncreepstrengthof9crsteel AT dvorakjiri theeffectofpredeformationoncreepstrengthof9crsteel AT blumwolfgang theeffectofpredeformationoncreepstrengthof9crsteel AT sklenickavaclav theeffectofpredeformationoncreepstrengthof9crsteel AT horitazenji theeffectofpredeformationoncreepstrengthof9crsteel AT takizawayoichi theeffectofpredeformationoncreepstrengthof9crsteel AT tangyongpeng theeffectofpredeformationoncreepstrengthof9crsteel AT kuncickalenka theeffectofpredeformationoncreepstrengthof9crsteel AT kocichradim theeffectofpredeformationoncreepstrengthof9crsteel AT kvapilovamarie theeffectofpredeformationoncreepstrengthof9crsteel AT svobodovamarie theeffectofpredeformationoncreepstrengthof9crsteel AT kralpetr effectofpredeformationoncreepstrengthof9crsteel AT dvorakjiri effectofpredeformationoncreepstrengthof9crsteel AT blumwolfgang effectofpredeformationoncreepstrengthof9crsteel AT sklenickavaclav effectofpredeformationoncreepstrengthof9crsteel AT horitazenji effectofpredeformationoncreepstrengthof9crsteel AT takizawayoichi effectofpredeformationoncreepstrengthof9crsteel AT tangyongpeng effectofpredeformationoncreepstrengthof9crsteel AT kuncickalenka effectofpredeformationoncreepstrengthof9crsteel AT kocichradim effectofpredeformationoncreepstrengthof9crsteel AT kvapilovamarie effectofpredeformationoncreepstrengthof9crsteel AT svobodovamarie effectofpredeformationoncreepstrengthof9crsteel |